High-Performance Wrap-Gated InGaAs Nanowire Field-Effect Transistors with Sputtered Dielectrics

نویسندگان

  • Li-Fan Shen
  • SenPo Yip
  • Zai-xing Yang
  • Ming Fang
  • TakFu Hung
  • Edwin Y.B. Pun
  • Johnny C. Ho
چکیده

Although wrap-gated nanowire field-effect-transistors (NWFETs) have been explored as an ideal electronic device geometry for low-power and high-frequency applications, further performance enhancement and practical implementation are still suffering from electron scattering on nanowire surface/interface traps between the nanowire channel and gate dielectric as well as the complicated device fabrication scheme. Here, we report the development of high-performance wrap-gated InGaAs NWFETs using conventional sputtered Al2O3 layers as gate dielectrics, instead of the typically employed atomic layer deposited counterparts. Importantly, the surface chemical passivation of NW channels performed right before the dielectric deposition is found to significantly alleviate plasma induced defect traps on the NW channel. Utilizing this passivation, the wrap-gated device exhibits superior electrical performances: a high ION/IOFF ratio of ~ 2 × 10(6), an extremely low sub-threshold slope of 80 mV/decade and a peak field-effect electron mobility of ~ 1600 cm(2)/(Vs) at VDS = 0.1 V at room temperature, in which these values are even better than the ones of state-of-the-art NWFETs reported so far. By combining sputtering and pre-deposition chemical passivation to achieve high-quality gate dielectrics for wrap-gated NWFETs, the superior gate coupling and electrical performances have been achieved, confirming the effectiveness of our hybrid approach for future advanced electronic devices.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ambipolar, low-voltage and low-hysteresis PbSe nanowire field-effect transistors by electrolyte gating.

Semiconductor nanowire field-effect transistors (FETs) are interesting for fundamental studies of charge transport as well as possible applications in electronics. Here, we report low-voltage, low-hysteresis and ambipolar PbSe nanowire FETs using electrolyte-gating with ionic liquids and ion gels. We obtain balanced hole and electron mobilities at gate voltages below 1 V. Due to the large effec...

متن کامل

Hexagonal Binary Decision Diagram Quantum Logic Circuits Using Schottky In-Plane and Wrap Gate Control of GaAs and InGaAs Nanowires

Previous quantum device research has been done on discrete device levels and lacks a clear vision for high density integration. This paper proposes a new, simple and realistic approach for quantum large scale integrated circuits (QLSIs) where a binary-decision diagram (BDD) logic architecture is implemented by BDD node devices based on quantum wire transistors (QWTrs) and single electron transi...

متن کامل

Feasibility, Accuracy, and Performance of Contact Block Reduction Method for Multi-band Simulations of Ballistic Quantum Transport

Related Articles Correlating stress generation and sheet resistance in InAlN/GaN nanoribbon high electron mobility transistors Appl. Phys. Lett. 101, 113101 (2012) Nonmagnetic spin-field-effect transistor Appl. Phys. Lett. 101, 082407 (2012) Charge dynamics of a single donor coupled to a few-electron quantum dot in silicon Appl. Phys. Lett. 100, 213107 (2012) Threshold voltage modulation mechan...

متن کامل

High-performance single layered WSe₂ p-FETs with chemically doped contacts.

We report high performance p-type field-effect transistors based on single layered (thickness, ∼0.7 nm) WSe(2) as the active channel with chemically doped source/drain contacts and high-κ gate dielectrics. The top-gated monolayer transistors exhibit a high effective hole mobility of ∼250 cm(2)/(V s), perfect subthreshold swing of ∼60 mV/dec, and I(ON)/I(OFF) of >10(6) at room temperature. Speci...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015